Two Independent Networks of Interstitial Cells of Cajal Work Cooperatively with the Enteric Nervous System to Create Colonic Motor Patterns
نویسندگان
چکیده
Normal motility of the colon is critical for quality of life and efforts to normalize abnormal colon function have had limited success. A better understanding of control systems of colonic motility is therefore essential. We report here a hypothesis with supporting experimental data to explain the origin of rhythmic propulsive colonic motor activity induced by general distention. The theory holds that both networks of interstitial cells of Cajal (ICC), those associated with the submuscular plexus (ICC-SMP) and those associated with the myenteric plexus (ICC-MP), orchestrate propagating contractions as pacemaker cells in concert with the enteric nervous system (ENS). ICC-SMP generate an omnipresent slow wave activity that causes propagating but non-propulsive contractions ("rhythmic propagating ripples") enhancing absorption. The ICC-MP generate stimulus-dependent cyclic depolarizations propagating anally and directing propulsive activity ("rhythmic propulsive motor complexes"). The ENS is not essential for both rhythmic motor patterns since distention and pharmacological means can produce the motor patterns after blocking neural activity, but it supplies the primary stimulus in vivo. Supporting data come from studies on segments of the rat colon, simultaneously measuring motility through spatiotemporal mapping of video recordings, intraluminal pressure, and outflow measurements.
منابع مشابه
Interstitial cells of Cajal, enteric nerves, and glial cells in colonic diverticular disease.
BACKGROUND Colonic diverticular disease (diverticulosis) is a common disorder in Western countries. Although its pathogenesis is probably multifactorial, motor abnormalities of the large bowel are thought to play an important role. However, little is known about the basic mechanism that may underlie abnormal colon motility in diverticulosis. AIMS To investigate the interstitial cells of Cajal...
متن کاملThe role of glial cells and apoptosis of enteric neurones in the neuropathology of intractable slow transit constipation.
BACKGROUND Idiopathic slow transit constipation is one of the most severe and often intractable forms of constipation. As motor abnormalities are thought to play an important pathogenetic role, studies have been performed on the colonic neuroenteric system, which rules the motor aspects of the viscus. AIMS We hypothesised that important neuropathological abnormalities of the large bowel are p...
متن کاملImmunohistochemical analysis of myenteric ganglia and interstitial cells of Cajal in ulcerative colitis
Ulcerative colitis (UC) is an inflammatory bowel disease with alterations of colonic motility, which influence clinical symptoms. Although morpho-functional abnormalities in the enteric nervous system have been suggested, in UC patients scarce attention has been paid to possible changes in the cells that control colonic motility, including myenteric neurons, glial cells and interstitial cells o...
متن کاملThe evaluation of interstitial Cajal cells distribution in non-tumoral colon disorders.
Interstitial cells of Cajal (ICC) are pacemakers that generate electric waves recorded from the gut and are important for intestinal motility. The aim of the study was to evaluate the distribution of interstitial cells of Cajal in colon specimens from patients with idiopathic chronic pseudo-obstruction and other non-tumoral colon disorders as compared with samples from normal colon. The distrib...
متن کاملTransplantation of enteric nervous system stem cells rescues nitric oxide synthase deficient mouse colon
Enteric nervous system neuropathy causes a wide range of severe gut motility disorders. Cell replacement of lost neurons using enteric neural stem cells (ENSC) is a possible therapy for these life-limiting disorders. Here we show rescue of gut motility after ENSC transplantation in a mouse model of human enteric neuropathy, the neuronal nitric oxide synthase (nNOS-/-) deficient mouse model, whi...
متن کامل